Incorporation of LiNbO₃ crystals into tellurite glasses

HYUN GYU KIM, TAKAYUKI KOMATSU, RYUJI SATO, KAZUMASA MATUSITA Department of Chemistry, Nagaoka University of Technology, Kamitomioka-cho, Nagaoka 940-21, Japan

Transparent tellurite glasses containing 5–10 µm diameter LiNbO₃ crystals (3–7 wt %) have been successfully prepared using an incorporation method in which LiNbO₃ crystals are directly dispersed into the 80TeO₂–15Li₂O–5Nb₂O₅ glass. The dissolution behaviour of the LiNbO₃ crystals greatly depends on the Li₂O: Nb₂O₅ ratio in the matrix glasses. In the 80TeO₂–10Li₂O–10Nb₂O₅ matrix glass, the crystals remaining after incorporation have the composition LiNb₃O₈. A small difference in the refractive indices, *n*, between the TeO₂-based glasses (*n*=2.07) and the incorporated LiNbO₃ crystals (*n*=2.296) is a significant reason for the transparency. It is feasible to prepare the highly transparent TeO₂-based glasses containing a large amount of LiNbO₃ crystals by controlling the incorporation process.

1. Introduction

Recently the present authors [1] succeeded in preparing transparent tellurite glasses containing 10 µm diameter LiNbO3 crystals by using a two-step heat-treatment process for the glasses based on the TeO₂-Li₂O-Nb₂O₅ system. Such glasses are candidates for nonlinear optical applications. The favourite glass composition for the precipitation of LiNbO₃ crystals was 50TeO₂-35Li₂O-15Nb₂O₅ with a high Li⁺:Nb⁵⁺ ratio [1]. Recently transparent tellurite glasses containing KNbO3 crystals have also been fabricated using an incorporation method in which the KNbO₃ particles are directly incorporated into the $TeO_2-K_2O-Nb_2O_5$ glasses [2]. An incorporation method has an advantage of the choice of matrix glass composition as compared to a crystallization method. In addition it is easy to form glasses created by the incorporation method into desired shapes such as fibres. The reason that TeO₂-based glasses are used as matrix glasses is that the refractive indices of the TeO₂-based glasses and many ferroelectric materials are similar which leads to extremely low scattering losses at the glass/crystal interface [1-4]. In addition, it should be noted that tellurite glasses have low melting temperatures and good infrared transmissions [5,6] and are also promising materials for use in nonlinear optical devices [7,8]. The preparation and optical properties of TeO₂-based glasses containing ferroelectrics, is therefore, of particular interest.

In this study, we fabricate transparent TeO_2 -Li₂O-Nb₂O₅ glasses containing 10 µm diameter LiNbO₃ crystals using an incorporation method. The solubility behaviours of the LiNbO₃ crystals in the tellurite glasses, particularly the effects of the matrix glass composition, the incorporation temperature and melting time have on the solubility, have been clarified.

2. Experimental

The nominal compositions examined in the present study were 80TeO_2 - $(20 - x)\text{Li}_2\text{O}-x\text{Nb}_2\text{O}_5$ (x = 5, 8and 10 mol %). The bulk glasses were prepared by using a conventional melt-quenching method. The raw materials used were reagent grade TeO₂ (99%, Soekawa Chemicals), Li₂CO₃ (99%, Nacalai Tesque) and Nb₂O₅ (99.9%, Soekawa Chemicals). Batches of 30 g size were melted in a platinum crucible at 900–950 °C for 60 min in an electric furnace. The LiNbO₃ powder (99.9%, Aldrich Chemicals) was calcined at 800 °C for 24 h and sintered at 1170 °C for 6 h in order to develop the particle size. The presence of LiNbO₃ crystals as a single phase in the sintered ceramics was confirmed from the X-ray diffraction (XRD) analysis.

The TeO₂-Li₂O-Nb₂O₅ glasses and sintered LiNbO₃ ceramics were pulverized, and then were intimately mixed. The grain size of the LiNbO₃ powders was less than 37 µm. The mixtures were heated in a platinum crucible at 700-1000 °C. After stirring with a silica glass rod and holding for several minutes, the remelted samples were poured on to an iron plate. The XRD experiments performed at room temperature using CuK α radiation verified the presence of LiNbO₃ crystals in the glasses. The transparency of the remelted samples was checked through optical spectra. The refractive index, n, of glasses for a wavelength of 632.8 nm (He-Ne laser) at room temperature was measured using an ellipsometer (Model DVA-36L, Mizojiri Optical Co.). The size and dispersion state of the LiNbO₃ crystals in the matrix glasses were examined with an optical polarization microscope.

3. Results

The DTA curves of $80\text{TeO}_2-10\text{Li}_2\text{O}-10\text{Nb}_2\text{O}_5$ and $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glasses are shown in Fig. 1.

Figure 1 DTA curves for tellurite glasses. The heating rate was $10 \,^{\circ}\text{Cmin}^{-1}$. A: $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$, B: $80\text{TeO}_2-10\text{Li}_2\text{O}-10\text{Nb}_2\text{O}_5$.

The values of the glass transition, T_g , crystallization onset, T_x , and melting, T_m , temperatures for the $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass are 303, 473, and $550\,^{\circ}\text{C}$, respectively. The numerical difference between T_g and T_x , ($\Delta T = T_x - T_g$), in this glass is $170\,^{\circ}\text{C}$, indicating that the thermal stability of this glass is extremely high. The values of T_g , T_x and T_m for the glasses examined in this study are summarized in Table I, together with the values of refractive index, *n*, and density, ρ . All glasses are transparent and yellowish.

Fig. 2 shows the room temperature XRD patterns for the samples obtained by remelting a mixture of the powders of 80TeO_2 -(20 - x)Li₂O-xNb₂O₅ glasses and LiNbO3 crystals at 950 °C for 1 min, where the added amount of LiNbO3 crystals was 15 wt %. In the matrix glass of 80TeO2-10Li2O-10Nb2O5 composition, the XRD pattern indicates the presence of $LiNb_3O_8$ crystals. It is very strange that the presence of LiNbO₃ crystals is not confirmed, although LiNbO₃ crystals were incorporated into the glass. In the matrix glass of 80TeO₂-12Li₂O-8Nb₂O₅ composition, the presence of both $LiNbO_3$ and $LiNb_3O_8$ crystals is confirmed. In the matrix glass of 80TeO₂-15Li₂O-5Nb₂O₅ composition, only the XRD peaks attributable to LiNbO₃ crystals are observed. These results indicate that the crystalline phase present in the remelted samples implicitly depends on the composition of the matrix glasses, i.e. on the ratio Li₂O:Nb₂O₅. In addition the results indicate that TeO₂-Li₂O-Nb₂O₅ glasses with high Li₂O:Nb₂O₅ ratios are favourable for the incorporation of LiNbO₃ crystals.

TABLE I Values of glass transition temperature, T_g , crystallization onset temperature, T_x , melting temperature, T_m , refractive index, *n*, and density, ρ , for 80TeO₂-(20 - x)Li₂O-xNb₂O₅ glasses.

Glass	T_{g} (°C)	$T_{\mathbf{x}}$ (°C)	$T_{\rm m}$ (°C)	n	$\rho (g cm^{-3})$
x = 5	303	473	550	2.07	5.06
x = 8	318	487	614	2.08	5.11
x = 10	326	496	663	2.09	5.16

Figure 2 Powder XRD patterns (Cu K_{α}) at room temperature for the samples obtained by remelting the mixtures of the powders of 80TeO_2 -(20 - x)Li₂O-xNb₂O₅ glasses and 15 wt % LiNbO₃ crystals for (a) x = 5, (b) x = 8 and (c) x = 10. The remelting temperature and time were 950 °C and 1 min, respectively.

Fig. 3 shows the XRD patterns at room temperature for the samples obtained by remelting a mixture of the powders of 80TeO₂-15Li₂O-5Nb₂O₅ glass and LiNbO₃ crystals (15 wt %) at 950 °C for 1, 1.5 and 2 min. For the sample remelted for 2 min, no crystalline peaks are detected, indicating the perfect dissolution of the LiNbO₃ crystals into the matrix glass. For the sample remelted for 1.5 min, the XRD pattern clearly indicates the presence of LiNbO₃ crystals. The optical photographs for these remelted samples are shown in Fig. 4. A sample remelted for 40s is black and opaque. The samples remelted for 1 and 1.5 min, however, are transparent. The optical polarization micrograph for the sample remelted for 1.5 min is shown in Fig. 5. LiNbO3 crystals with diameters of about 5-10 µm are dispersed in the matrix glass. The optical absorption spectra for these melted samples are shown in Fig. 6. The absorption edge energies, E_{g} ,

Figure 3 Powder XRD patterns (CuK α) at room temperature for the samples obtained by remelting the mixtures of the powders of 80TeO₂-15Li₂O-5Nb₂O₅ glass and LiNbO₃ cyrstals (15 wt %). The remelting temperature was 950 °C.

Figure 4 Optical photographs for the samples obtained by remelting the mixtures of the powders of 80TeO_2 -15Li₂O-5Nb₂O₅ glass and LiNbO₃ crystals (15 wt %). The remelting temperature was 950 °C.

for the samples are almost the same, i.e. $E_g = 3.18 \text{ eV}$ (390 nm), and the transmittance at wavelengths above 400 nm increases with increasing remelting time. We note that the LiNbO₃ crystals with $E_g = 3.54 \text{ eV}$ (350 nm) are colourless above 400 nm [9].

In order to check the dissolution process of the LiNbO₃ crystals into the $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass, a thermal analysis for the mixture of $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass powder and LiNbO₃ crystalline powder (15 wt %) was performed. The DTA curve taken for this mixture is shown in Fig. 7. It is seen that the value of T_g and T_x for the mixture are almost the same as those for the matrix glass

Figure 5 Polarization microscope photograph for the sample obtained by remelting the mixture of the powders of $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass and LiNbO₃ crystals (15 wt %). The remelting temperature and time was 950 °C and 1.5 min, respectively.

Figure 6 Optical transmittance spectra for the samples obtained by remelting the mixtures of the powders of $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass and LiNbO₃ crystals (15 wt %). A: the sample remelted at 950 °C for 1 min, B: the sample remelted at 950 °C for 1.5 min.

containing no LiNbO₃ crystals. However, for the mixed sample, two endothermic peaks are clearly observed. From comparison with the DTA curve obtained for the pure matrix glass, it is concluded that the first endothermic peak appearing at around 540 °C is the same as in Fig. 1. The second endothermic peak appearing at around 680 °C is then due to the dissolution of LiNbO₃ crystals into the matrix melt.

In the incorporation method, the estimation of the amount of LiNbO₃ crystals remaining in the transparent glass is one of the most important points. Fig. 8 shows a schematic of the room temperature XRD pattern for the mixture of the $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass powder and LiNbO₃ crystalline powder. The ratio of the LiNbO₃ (012) plane peak area, S_c , to the halo pattern area, S_g , due to the matrix glass, S_c : S_g is shown in Fig. 9 as a function of the content of LiNbO₃

Figure 7 DTA curves for the tellurite glasses powders. The heating rate was 10° Cmin⁻¹. A: 80TeO₂-15Li₂O-5Nb₂O₅, B: 80TeO₂-15Li₂O-5Nb₂O₅ + 15 wt % LiNbO₃.

Figure 8 Powder XRD patterns (CuK α) at room temperature for the mixture of the powders of $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ and LiNbO₃ crystals (15 wt %). S_c is the peak area due to the (012) plane of LiNbO₃ crystals, and S_g is the area of the halo due to the glass.

crystals. A linear correlation between the ratio of S_e : S_g and the added amount of LiNbO₃ crystals is observed. It is found that the amount of LiNbO₃ crystals present in the samples produced by the remelting for 1 and 1.5 min of a mixture of $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass and 15 wt % of LiNbO₃ crystals are about 7 and 3 wt %, respectively, as shown in Fig. 9. The amount of LiNbO₃ crystals present in the samples remelted at various temperatures for 1, 1.5 and 2 min are presented in Fig. 10. It is seen that at temperatures above 700 °C the LiNbO₃ crystals dissolve rapidly into the

Figure 9 Correlation between the values of S_c/S_g in XRD patterns (\bullet) and the amount of LiNbO₃ crystals in the mixtures of $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass and LiNbO₃ crystals. The values of S_c/S_g for the remelted samples of the mixtures of $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass and LiNbO₃ crystals (15 wt %) at 950 °C for 1 min (\triangle) and 1.5 min (\square) are also shown.

 $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5$ glass. These results support the assignment that the endothermic peak at around 680 °C shown in Fig. 7 is due to the dissolution of the LiNbO₃ crystals into the glass melt.

4. Discussion

4.1. Effect of the matrix glass composition on LiNbO₃ incorporation

One of the most striking results obtained in the present study is that the crystalline phase present in the remelted samples of the mixtures of TeO₂-Li₂O-Nb₂O₅ glass and 15 wt % LiNbO3 crystals changes with the ratio of Li₂O:Nb₂O₅ in the matrix glass. For example, the crystalline phase present in the remelted sample of a mixture of 80TeO₂-10Li₂O-10Nb₂O₅ glass and LiNbO₃ crystals is not LiNbO₃ but $LiNb_3O_8$, as is shown in Fig. 2. In the $Li_2O-Nb_2O_5$ binary phase diagram [10], the LiNb₃O₈ phase exists over a wide composition range of the Nb₂O₅-rich side. It is obvious that the behaviour of Li⁺ in the matrix glasses and in the LiNbO3 crystals is important for the phase transformation of LiNbO3 to LiNbO3O8 during the remelting. It is worth noting the effect of the glass composition has on the crystallization of the LiNbO₃ crystals from TeO₂-Li₂O-Nb₂O₅ glasses [1]. In the previous paper [1], we demonstrated that LiNbO₃ crystals were directly precipitated from the $50 \text{TeO}_2 - 35 \text{Li}_2 \text{O} - 15 \text{Nb}_2 \text{O}_5$ glass with a high Li⁺ content and thus the presence of a small amount of Li⁺ is insufficient for the precipitation of LiNbO₃ crystals [10].

At this moment, although the dissolution mechanism of LiNbO₃ crystals into TeO₂-based glasses has

Figure 10 The remaining amounts of LiNbO₃ crystals after remelting at various temperatures and times in the mixture $80\text{TeO}_2-15\text{Li}_2\text{O}-5\text{Nb}_2\text{O}_5 + 15 \text{ wt }\% \text{ LiNbO}_3$. (\blacksquare) = 2 min, (\blacklozenge) = 1.5 min and (\blacktriangle) = 1.0 min.

not been clarified, one possible explanation for the present results is to assume that the dissolution of Li⁺ of the LiNbO3 crystals into the TeO2-Li2O-Nb2O5 glasses is faster than that of Nb⁵⁺. If so, the composition of the LiNbO₃ crystals changes gradually into Li^+ deficient LiNbO3 crystals during remelting, and consequently Li⁺ deficient LiNbO₃ crystals transform into the stable crystalline phase, i.e. LiNb₃O₈. Further, the dissolution rate of the Li⁺ of the LiNbO₃ crystals into the TeO₂-based glasses would depend on the concentration of Li⁺ in the TeO₂-based glasses. That is, in the TeO₂-based glasses with high Li⁺ contents, the dissolution rate of the Li⁺ of the LiNbO₃ crystals would decrease due to a small Li+ concentration gradient between the crystals and the glasses, thus no Li⁺ deficient LiNbO₃ crystals are produced and consequently no phase transformation of LiNbO₃ to LiNb₃O₈ occurs. It should be pointed out that many post-growth processing operations for LiNbO₃ single crystals involve as an important mechanism the diffusion of Li⁺ through the LiNbO₃ crystals [11].

It is useful to discuss the structural features of $LiNbO_3$ and $LiNb_3O_8$. $LiNbO_3$ has a tendency to non-stoichiometry and hence with a ratio Li^+ : $Nb^{5+} < 1$, meaning that $LiNbO_3$ has a very high concentration of intrinsic defects [12]. For optical device applications it is very important to control the ratio of Li^+ : Nb^{5+} in $LiNbO_3$. Furthermore, it is well known that in $LiNbO_3$ the oxygen octahedra share faces along the c-axis and one third of the octahedral interstices are vacant [13]. On the other hand, in $LiNb_3O_8$ the oxygen octahedra share edges and half of the oxygen octahedral interstices are vacant [14]. Therefore, it is considered formally that the composition of $LiNb_3O_8$ corresponds to that of Li_2O depleted $LiNbO_3$. These structural features of

LiNbO₃ and LiNb₃O₈ seem to support our dissolution mechanism stated above. Finally, it should be pointed out that LiNb₃O₈ grows on LiNbO₃ substrates at annealing temperatures up to 750 °C during Ti:LiNbO₃ optical waveguide fabrication, although the mechanism of formation of LiNb₃O₈ is still under discussion [15].

4.2. Transparency of LiNbO₃ incorporated glasses

should be emphasized that the 80TeO_{2} -It 15Li₂O-5Nb₂O₅ glasses containing about 7 wt % LiNbO₃ crystals with a diameter of 5–10 μ m are transparent. Usually, for example, in order to obtain transparent bulk SiO2-based glasses containing semiconductors such as CdS or $CdS_{1-x}Se_x$, the diameter of the semiconductor particles present in the glasses must be smaller than the wavelength of visible light, and their concentration is limited to around a few weight percent [16]. As discussed in the previous paper [1], it is considered that a small difference in the refractive indices between the matrix glass (n = 2.07)and LiNbO₃ crystals (n = 2.296) leads to only a small fraction of the light being reflected at the interface between them and this results in transparency, even though the particle size is much larger than the wavelength of visible light.

We now quantitatively consider the scattering loss of light at the glass/LiNbO₃ interface using the wellknown Fresnel formula. If the incident angle is normal (90°), the fraction, R, of light reflected at the interface is estimated from the following equation.

$$R = \left(\frac{n_{\rm a} - n_{\rm b}}{n_{\rm a} + n_{\rm b}}\right)^2 \tag{1}$$

where n_a and n_b are the refractive indices of phases a and b, respectively. Firstly, let us estimate the scattering loss at the air/matrix glass or air/LiNbO₃ interface, because both the matrix glass and the LiNbO₃ crystals have values of the refractive index larger than 2.0. The transmittances, T, for the matrix glass itself and for pure LiNbO₃ single crystals are estimated using the Lambert-Beer law,

$$T = \frac{l_0}{l_i} = (1 - R)^2 e^{-\alpha x}$$
 (2)

where I_i and I_o are the intensity of the incident and output light, respectively, α the absorption coefficient and x the sample thickness. For the air/glass and air/LiNbO₃ interfaces, the values of $(1 - R)^2$ are 0.77 and 0.71, respectively. As shown in Fig. 6, the transmittances at above $\lambda = 600$ nm are T = 76% for the matrix glass and T = 70% for the LiNbO₃ single crystals, indicating that the origin of the main scattering loss above $\lambda = 600$ nm in the TeO₂-based glasses and LiNbO₃ crystals is the scattering at the interface between air and glasses or crystals. This also means that the absorption of light above 600 nm in the matrix glass itself or LiNbO₃ single crystal itself is extremely small.

The above discussion indicates that the most important factor for the scattering loss of light in the

Figure 11 Calculated transmittances of the TeO₂-based glass (n = 2.07) containing various amounts of LiNbO₃ crystals with various thicknesses, d. (\bigcirc): $d = 10 \,\mu\text{m}$, (\triangle) $d = 5 \,\mu\text{m}$, (\square) $d = 3 \,\mu\text{m}$ and (\bigcirc) $d = 1 \,\mu\text{m}$.

TeO₂-based glasses containing LiNbO₃ crystals is the glass/LiNbO₃ interface. In other words, the total scattering loss of the light is determined by the number of the interfaces. When LiNbO₃ crystals with a thickness of d are arranged in a TeO₂-based glass with a thickness of L and the number of LiNbO₃ crystals is N, the intensity of output light is estimated from the following equation,

$$I_{o} = I_{i}(1 - R_{g})^{2}(1 - R_{c})^{2N} \exp[-(L - Nd)\alpha_{g}]$$

$$\exp[-N_{d}\alpha_{c}] \qquad (3)$$

where $R_{\rm g}$ and $R_{\rm c}$ are the fraction of light reflected at the air/glass and glass/LiNbO3 interfaces, respectively, and α_{g} and α_{c} the absorption coefficients of a matrix glass and a LiNbO3 crystal, respectively. As discussed above, it is reasonable to assume that the terms of exp $[-(L - Nd)\alpha_{g}]$ and exp $[-Nd\alpha_{c}]$ are almost unitary. Therefore, the reduction in the transmittance due to the incorporation of the LiNbO₃ crystals is estimated from the term of $(1 - R_c)^{2N}$, for example, N = 29 for a 10% reduction, N = 44 for a 15% reduction, a value of T = 76% is used as the transmittance in the original matrix glass containing no LiNbO₃ crystals. For a given concentration of LiNbO₃ crystals the reduction of transmittance is increased by decreasing the size of the LiNbO₃. That is, for the case of LiNbO₃ crystals with a small thickness, even a small amount will produce a large reduction of transmittance. Conversely, in the case of LiNbO₃ with a large thickness, even the glass containing a large amount of LiNbO₃ will have an excellent transparency. The relationship between the amount of LiNbO₃ crystals and the transmittance were calculated using the density values of the matrix glass (5.06 g cm^{-3}) and LiNbO₃ crystals (4.64 g cm^{-3}) for various thicknesses, d, and the results are shown in Fig. 11. It is seen from Fig. 11 that theoretically an incorporation of 15 wt % LiNbO3 crystals with a thickness of 5 μ m produces a reduction of only 10% in the transmittance. In the present study, we found from Fig. 6 that the glass containing about 3 wt %LiNbO₃ crystals with a diameter of 5–10 µm shows a reduction of 10% in the transmittance. This might indicate that LiNbO₃ crystals with small diameters are still included in the remelted sample. In conclusion, it is feasible to prepare highly transparent TeO₂-based glasses containing a large amount of LiNbO₃ crystals by controlling incorporation process.

5. Conclusions

The fabrication of transparent tellurite glasses containing LiNbO_3 crystals was tried using an incorporation method. The following results were obtained.

1. The dissolution behaviours of LiNbO₃ crystals (15 wt %) in the $80\text{TeO}_2-(20 - x)\text{Li}_2\text{O}-x\text{Nb}_2\text{O}_5$ glasses depended greatly on the ratio of Li₂O:Nb₂O₅. In particular, when the LiNbO₃ crystals were dissolved and dispersed in the glass with Li₂O: Nb₂O₅ = 1, the crystals remaining in the glass after incorporation were LiNb₃O₈.

2. The favourite glass composition for the incorporation of LiNbO₃ crystals was $80TeO_2-15Li_2O-5Nb_2O_5$. The maximum amount of LiNbO₃ crystals remaining in the transparent glass after incorporation was about 7 wt %.

3. A small difference in the refractive indices between the matrix glasses and the incorporated $LiNbO_3$ crystals is a significant reason for the observed transparency.

References

- 1. H. G. KIM, T. KOMATSU, R. SATO and K. MATUSITA, J. Non-Cryst. Solids 162 (1993) 201.
- 2. T. KOMATSU, K. SHIOYA and K. MATUSITA, J. Am. Ceram. Soc. 76 (1993) 2923.
- T. KOMATSU, H. TAWARAYAMA, H. MOHRI and K. MATUSITA, J. Non-Cryst. Solids 135 (1991) 105.
- 4. T. KOMATSU, H. TAWARAYAMA and K. MATUSITA, J. Ceram. Soc. Japan 101 (1993) 48.
- 5. J. E. STANWORTH, J. Soc. Glass Technol. 36 (1952) 217.
- 6. A. K. YAKHKIND, J. Am. Ceram. Soc. 49 (1966) 670.
- H. NASU, O. MATSUSHITA, K. KAMIYA, H. KOBA YASHI and K. KUBODERA, J. Non-Cryst. Solids 124 (1990) 275.
- S. H. KIM, T. YOKO and S. SAKKA, J. Am. Ceram. Soc. 76 (1993) 865.
- 9. K. NASSAU, H. J. LEVINSTEIN and G. M. LOIACONO, J. Phys. Chem. Solids 27 (1966) 989.
- 10. P. LERNER, C. LEGRAS and J. P. DUMAN, J. Cryst. Growth 3 (1968) 231.
- 11. D. H. JUNDT, M. M. FEJER, R. G. NORWOOD and P. F. BORDUI, J. Appl. Phys. 72 (1992) 3468.
- 12. O. F. SCHIRMER, O. THIEMANN and M. WOHLECKE, J. Phys. Chem. Solids 52 (1991) 185.
- 13. M. M. ABOUELLEIL and F. L. LEONBERGER, J. Am. Ceram. Soc. 72 (1989) 1311.
- 14. B. M. GATEHOUSE and P. LEVERETT, Cryst. Struct. Comm. 1 (1972) 83.
- M. N. ARMENISE, C. CANALI, M. DE SARIO, A. CARN-ERA, P. MAZZOLDI and G. CELOTTI, J. Appl. Phys. 54 (1983) 6223.
- 16. N. F. BORRELLI, D. W. HALL, H. J. HOLLAND and D. W. SMITH, *ibid.* **61** (1987) 5399.

Received 2 September 1994 and accepted 17 October 1995